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Abstract. We analyze recent measurements of the nucleon quark sea isospin asymmetry in terms of the
chiral quark model. The new measurements indicate that the SU(3) model with modest symmetry breaking
and no η′ Goldstone boson gives a satisfactory description of data. We also discuss the matching parameter
for the axial-vector current. Finally, we analyze the nucleon quark spin polarization measurements directly
in the chiral quark model without using any SU(3) symmetry assumption on the hyperon axial-vector
form factors. The new data indicate that the chiral quark model gives a remarkably good and consistent
description of all low energy baryon measurements.

1 Introduction

The parameterization of low energy hadron structure by
the chiral quark model (χQM), suggested by Manohar
and Georgi [1] have enjoyed rising interest recently [2–15].
Especially, the emission and absorption of pseudoscalar
Goldstone bosons (GBs) from the quarks lead to a spin
depolarization that seems consistent with measurements
of the quark spin polarization in nucleons, axial-vector
form factors and magnetic moments.

The χQM Lagrangian for the quark-GB interaction
can be written, to lowest order, as

L = g8q̄Φγ5q, (1)

where g8 is a coupling constant,

q =


u
d
s


 , and Φ =




π0√
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+ β η√
6
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6
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αK− αK̄0 −β 2η√
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The GBs of the χQM are here denoted by the 0− meson
names π,K, η, η′, as is usually done. We have introduced
two SU(3) symmetry breaking parameters, α and β, which
allow for different strengths of production of GBs contain-
ing strange quarks.

To account for the quark sea isospin asymmetry as
measured by the NA51 Collaboration [16] and the New
Muon Collaboration (NMC) [17,18], Cheng and Li [3] sug-
gested the introduction of a broken U(3) symmetric model
with nine GBs. The ninth GB, the η′, should couple with
a relative strength ζ, that is different from the strength of
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the octet GBs (when α = 1 and β = 1). The interaction
Lagrangian has the form L′ = g8ζ

1√
3
q̄η′γ5q.

The probability of transforming a quark with spin up
by one interaction can then be expressed by the functions

|ψ(u↑)|2 = 1
6a(3 + β2 + 2ζ2)û↓ + ad̂↓ + aα2ŝ↓, (2)

|ψ(d↑)|2 = aû↓ + 1
6a(3 + β2 + 2ζ2)d̂↓ + aα2ŝ↓, (3)

|ψ(s↑)|2 = aα2û↓ + aα2d̂↓ + 1
3a(2β

2 + ζ2)ŝ↓. (4)

The coefficient of a quark q̂↓ is the transition probability
to q↓. The parameter a (a ∝ g2

8) measures the probability
of emission of a GB from a quark and is sometimes called
the fluctuation (or probability) parameter.

The NA51 experiment gave for the quark sea isospin
asymmetry the value ū/d̄ = 0.51 ± 0.09 at x = 0.18 [16].
This excludes that the value ζ = 0 can be used, at least
for β ' 1.

However, recently there has been a remeasurement of
both the ū/d̄ asymmetry as well as of the ū− d̄ asymme-
try by the NuSea Collaboration1 [19,20]. Their data differ
substantially from the earlier measurements. It therefore
seems appropriate to re-evaluate the range of the param-
eters of the χQM in view of the new data. In this paper,
we undertake such a re-evaluation in the framework of the
broken SU(3) symmetric χQM, and confront the model
with the spin polarization measurements of the nucleons.

The new measurements lead to the conclusion that
there is no need for a ninth GB. Thus we can set ζ = 0.
The magnetic moment data show that there is no need
to distinguish the η GB from the π GBs. Thus only two
parameters, a and α, remain in the model. We find the
best fit for those parameters, and show that these values
are in agreement with the matching parameter ga = 1,

1 Fermilab E866/NuSea Collaboration



502 T. Ohlsson, H. Snellman: Chiral quark model analysis

in accordance with the analysis of Weinberg [21, 22] and
with the nucleon axial-vector from factor gnp

A . Since the
model parameters can be determined from nucleon data
alone, we can study the nucleon quark spin polarization
measurements in this model without introducing any as-
sumption on the axial-vector form factor a8. This allows
in principle the possibility to study the gluon polarization
in the nucleon.

The outline of our paper is as follows. In Sect. 2 we
discuss the quark sea isospin asymmetry and also the so
called matching parameter ga introduced by Manohar and
Georgi [1]. This parameter is closely related to the in-
tegral expression for the parameter a [2]. In Sect. 3 we
investigate the parameter space for the χQM using the
neutron-proton axial-vector from factor gnp

A and confront
the model with the best measurements for the quark spin
structure functions. This eventually leads to a determi-
nation of the nucleon gluon spin polarization. Finally, in
Sect. 4, we present a summary of our analysis and also the
main conclusions.

2 Nucleon quark sea isospin asymmetry

As mentioned above, the quark sea isospin asymmetry in
the nucleon has previously been measured by the NA51
experiment to be ū/d̄ = 0.51 ± 0.09 at x = 0.18 [16].
The new measurement by the NuSea Collaboration [19,20]
gives this asymmetry for a range of x-values. Their value
for the ū/d̄ asymmetry at Q = 7.35 GeV can be accurately
fitted by the formula

d̄(x)/ū(x) = 1 + 1120x2.75(1 − x)15 (5)

in the region 0.02 < x < 0.345 (see Fig. 1). Lacking in-
dependent measurements of ū(x) and d̄(x), we will here
define the ū/d̄ asymmetry as

ū/d̄ ≡
(∫ 1

0
d̄(x)/ū(x) dx

)−1

. (6)

By integrating (5) over the given region, we obtain the
asymmetry as

d̄/ū '
∫ 0.345
0.02 d̄(x)/ū(x) dx

0.345 − 0.02
≈ 1.325,

whence ū/d̄ ≈ 0.7552.
In the χQM, this asymmetry is given by [8]

ū/d̄ =
21 + 2ξ + ξ2

33 − 2ξ + ξ2
, (7)

where ξ ≡ 2ζ + β. Comparing this with the new result
above shows that the asymmetry is compatible with the
parameter ξ = 1 for which

ū/d̄ =
3
4

= 0.75.

2 Another possible definition of the ū/d̄ asymmetry is ū/d̄ ≡∫ 1
0

(
d̄(x)/ū(x)

)−1
dx. This definition leads to ū/d̄ ≈ 0.765,

which is almost the same as ū/d̄ ≈ 0.755
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Fig. 1. The d̄/ū ratio at Q = 7.35GeV. r(x) ≡ d̄(x)/ū(x),
where 0.02 < x < 0.345. The 11 data points marked with ◦
were obtained by the NuSea Collaboration [19,20] and the data
point marked with 2 was obtained by the NA51 Collabora-
tion [16]. The thick solid curve was obtained by the NuSea Col-
laboration by fitting to the 11 experimental data points (not
including the data point from the NA51 experiment). The ana-
lytical expression for the fitted curve is 1 + 1120x2.75(1 − x)15.
The thin solid line is the average d̄/ū ratio, which is about
1.325, and the dotted lines are the corresponding 5 % errors.
The dashed line shows the d̄/ū ratio for the SU(3) χQM and
the long dashed line shows the d̄/ū ratio for the SU(2) χQM
(i.e. the χQM with just pions as GBs)

The value ξ = 2ζ + β = 1 implies that for a value of β
around 1, we can put ζ = 0, corresponding to complete η′
suppression. Evidence for a strong η′ suppression has also
been suggested by Song [9] and is discussed in [5, 7, 10].
The value ζ = 0 is welcome, since our understanding from
QCD concerning the role of the η′ is that it is not a GB,
but related to instantons via the axial anomaly [23].

In Fig. 1 we see that the d̄/ū asymmetry for the SU(3)
χQM coincides remarkably well with the experimental re-
sult. In the paper by the NuSea Collaboration [20], it is
indicated in their Fig. 3, and commented on in the text,
that the χQM is not compatible with data. However, their
quoted value of 11/7 for the d̄/ū asymmetry in the χQM is
relevant only for the SU(2) χQM (corresponding to β = 0
and ζ = 0, i.e. ξ = 0 in (7)), and not for the SU(3) χQM.
We should thus instead interpret the new result as an ex-
perimental verification of the presence of η GBs in the
χQM.

We next study the quark sea isospin asymmetry ū− d̄
appearing in the Gottfried sum-rule [24]. Here the previ-
ous value is ū − d̄ = −0.15 ± 0.04, which was obtained
by the NMC [17, 18]. In [20], the NuSea Collaboration
has measured this to be ū − d̄ = −0.100 ± 0.024 at Q =
7.35 GeV. This is 2/3 of the value deduced by the NMC.
We can now use this new measurement to estimate the
parameter a in the χQM. We will use the parameter val-
ues β = 1 and ζ = 0, i.e. ξ = 1. From the formula of the



T. Ohlsson, H. Snellman: Chiral quark model analysis 503

200

250

300

350

400

m [MeV]

0.6

0.8

1

1.2

ga

0

0.1

0.2

0.3

a

00

250

300

350m [MeV]
Fig. 2. The probability parameter a plotted
against the quark mass m and the matching pa-
rameter (the quark axial-vector current coupling
constant) ga
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Fig. 3. The ratio a/g2
a as a function of the quark mass m.

a/g2
a = f(m), where f(m) is in integral form. In the indicated

region of m, the function f(m) can be fitted with the linear
function c0+c1m, where c0 ≈ −0.043 and c1 ≈ 0.00054MeV−1

ū− d̄ asymmetry in the χQM [8]

ū− d̄ = a

(
2ζ + β

3
− 1

)
= a

(
ξ

3
− 1

)
, (8)

we then obtain a = 0.150 ± 0.036.
In the χQM, ū/d̄ and ū − d̄ are both independent of

α. The parameters β and ζ determine the relative mixing
of the isospin triplet π̄ and the isospin singlets η and η′.

The probability parameter a has also been calculated
using the chiral field theory approach [2]. The result is

a =
g2
8

32π2

∫ 1

0
θ(Λ2

χSB − τ(z))z

×
{

ln
Λ2

χSB +m2
π

τ(z) +m2
π

+m2
π

[
1

Λ2
χSB +m2

π

− 1
τ(z) +m2

π

]}

× dz, (9)

where g8 ≡ 2mga/fπ, τ(z) ≡ m2z2/(1 − z), and θ is the
Heaviside function. The parameters m, mπ, fπ, and ΛχSB
are the quark mass, the GB mass, the pseudoscalar de-
cay constant, and the chiral symmetry breaking scale, re-
spectively. In the integral expression above for the pa-
rameter a, the so called “matching parameter”, ga, intro-
duced by Manohar and Georgi [1], occurs. The parameter
ga is sometimes also called the quark axial-vector current
coupling constant. Using the value a = 0.15 and the pa-
rameters m = 363 MeV, mπ = 140 MeV, fπ = 93 MeV,
ΛχSB ' 4πfπ = 1169 MeV, one obtains ga ≈ 0.987 ∼ 1
from solving (9). This is in good agreement with the argu-
ments of Weinberg [21, 22], that to lowest order in 1/Nc,
where Nc is the number of colors, the value of ga should
be 1.

It should be noted that the matching parameter ga and
the value of the parameter a are closely related. In Fig. 2
we have displayed a as a function m and ga. This is further
exemplified in Fig. 3, where we show how a/g2

a varies with
m. We observe that in the relevant region a scales as g2

a

for a fixed value of m. This dependence is neglected by
several authors, who calculate the value of the axial-vector
coupling constant of the nucleon from the difference of the
quark spin polarizations ∆q as gnp

A = ∆u−∆d. However,
when the matching parameter ga 6= 1 the expression for
gnp

A must be multiplied by ga, i.e. gnp
A = ga (∆u−∆d)

[1, 13].
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Table 1. The quark spin polarizations and ai, where i = 0, 3, 8.
a0 = ∆Σ ≡ ∆u + ∆d + ∆s, a3 = gnp

A ≡ ∆u − ∆d, and a8 ≡
∆u + ∆d − 2∆s. The experimental values from [27] have been
obtained assuming gnp

A = 1.2573 ± 0.0028 and a8 = 0.601 ±
0.038 and the experimental values from [34] have been obtained
assuming gnp

A = 1.2573±0.0028 and F/D = 0.575±0.016. The
data for the χQM are calculated using a = 0.15

Quantity Experimental NQM χQM χQM
value α ≈ 0.54 α = 2

3

∆u 0.83 ± 0.03 [27] 4
3 0.86 0.83

∆d −0.43 ± 0.03 [27] − 1
3 −0.40 −0.39

∆s −0.10 ± 0.03 [27] 0 −0.04 −0.07
−0.09 ± 0.02 [34]

a0 0.31 ± 0.07 [27] 1 0.41 0.37
0.30 ± 0.06 [34]

a3 1.2601 ± 0.0025 [25] 5
3 1.2601 (input) 1.22

a8 0.601 ± 0.038 [36] 1 0.54 0.57

Consider next the quark spin polarizations. In the
χQM, they are given by [7, 8]

∆u = 4
3 − a

( 7
3 + 4

3α
2 + 4

9ξ
′) , (10)

∆d = − 1
3 − a

( 2
3 − 1

3α
2 − 1

9ξ
′) , (11)

∆s = −aα2, (12)

where ξ′ ≡ β2 + 2ζ2. Thus for β = 1 and ζ = 0, we have
ξ′ = 1.

Using the quark spin polarizations, the observable gnp
A ,

expressed in terms of the χQM, becomes

gnp
A = ga (∆u−∆d) = 5

3ga

[
1 − a

(
1 + α2 + 1

3ξ
′)] . (13)

From our previous discussion, we have seen that the
parameters are compatible with ga = 1, which will be
used from now on. We will also fix the parameter β to
1, which seems to be favored by the magnetic moment
data [8,10], and hence the parameter ζ to 0, which implies
that ξ′ = 1. We have then only one free parameter α to
fit to gnp

A = 1.2601 ± 0.0025 [25]. The result is α ≈ 0.54.
This can, of course, not be taken as compulsory, since the
model would not allow gnp

A to be determined that well.
From magnetic moment data slightly higher values of α,
up to 0.7, are favored [8, 10]. Since α is the suppression
factor for kaon GB emission, it can be argued that α is of
the order m/ms ' 2/3 [4, 5, 7].

In Table 1 we list the quark spin polarizations cal-
culated from (10)–(12) with ξ′ = 1 and α ≈ 0.54 and
α = 2/3, respectively, as well as some other related quan-
tities.

3 Nucleon quark spin polarization

The nucleon quark spin polarizations are usually analyzed
by the spin dependent quark structure functions gp

1 and
gn
1 . In these analyses, the values of gnp

A and a8 are com-
monly used [26, 27]. The experimental value for a8 is ob-
tained from hyperon semileptonic decays using the as-
sumption of SU(3) flavor symmetry. However, when the

SU(3) symmetry is broken it is not clear how to connect
the axial-vector form factors to the quark spin polariza-
tions. Since the parameters in the χQM can be fixed with-
out using the hyperon axial-vector form factors, it offers an
independent way to analyze the nucleon spin. We thus ex-
press the nucleon quark spin polarization directly in terms
of the χQM quark spin polarizations, avoiding the use of
any SU(3) symmetry assumptions for the value of a8. For
our analysis, we will use the formulas from the analysis of
Ellis and Karliner [26,27].

Define the integrals

Γ p
1 (Q2) ≡

∫ 1

0
gp
1(x,Q2) dx, (14)

Γn
1 (Q2) ≡

∫ 1

0
gn
1 (x,Q2) dx, (15)

which are the first moments of the proton and neutron spin
structure functions, respectively. These integrals can be
expressed in terms of the quark spin polarizations, using
the evolution equations for arbitrary Q2, by means of two
functions, f = f(Q2) and h = h(Q2), in the form

Γ p(Q2) = 1
9∆u(Q

2)(f + h) + 1
18∆d(Q

2)(2h− f)

+ 1
18∆s(Q

2)(2h− f), (16)

Γn(Q2) = 1
9∆d(Q

2)(f + h) + 1
18∆u(Q

2)(2h− f)

+ 1
18∆s(Q

2)(2h− f). (17)

The functions f and h depend on the number of flavors
and the renormalization scheme. In the MS scheme for
Nf = 3 flavors, the functions f and h are given by [28]

f(αs(Q2)) = 1 − αs(Q2)
π

− 3.5833
(
αs(Q2)
π

)2

−20.2153
(
αs(Q2)
π

)3

−O(130)
(
αs(Q2)
π

)4

+ . . . (18)

and [29]

h(αs(Q2)) = 1 − αs(Q2)
π

− 1.0959
(
αs(Q2)
π

)2

−3.7
(
αs(Q2)
π

)3

+ . . . . (19)

Ellis and Karliner [26, 27] use the combinations gnp
A ≡

∆u −∆d = 1.2573 ± 0.0028 and a8 ≡ ∆u +∆d − 2∆s =
0.601 ± 0.038 to evaluate ∆Σ(Q2) ≡ ∆u(Q2) +∆d(Q2) +
∆s(Q2). Their most recent value is ∆Σ(Q2) = 0.31±0.07
at a renormalization scale of Q2 = 10 GeV2 [27].

However, as mentioned above, rather than using the
experimental values for the axial-vector form factors to
evaluate ∆Σ(Q2), we would like to analyze the spin struc-
ture integrals directly in terms of the χQM.
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Table 2. The total quark spin polarization ∆Σ(Q2) at Q2 = 5GeV2. The
data for the χQM are calculated using αs(Q2 = 5GeV2) = 0.287 ± 0.020
(corresponding to αs(Q2 = M2

Z) = 0.118 ± 0.003 [25])

Experiments ∆Σ(Q2)

Experimental χQM χQM
value α ≈ 0.54 α = 2

3

SMC 0.132 ± 0.017 0.295 ± 0.171 0.317 ± 0.171
Γ p

1
World average 0.142 ± 0.011 0.395 ± 0.110 0.417 ± 0.110

SMC −0.048 ± 0.022 0.289 ± 0.221 0.257 ± 0.221
Γ n

1
World average −0.061 ± 0.016 0.156 ± 0.161 0.126 ± 0.161

Expressed in terms of the χQM parameters, we obtain
the following relations

Γ p
1 (Q2) = 1

12f
(
gnp

A + 1
3a8

)
+ 1

9h∆Σ(Q2)

= 1
6f

[
1 − a

( 4
3 + 2

3α
2 + 1

3ξ
′)]

+ 1
9h∆Σ(Q2), (20)

Γn
1 (Q2) = 1

12f
(−gnp

A + 1
3a8

)
+ 1

9h∆Σ(Q2)

= − 1
9f

[
1 − a

( 1
2 + 3

2α
2 + 1

3ξ
′)]

+ 1
9h∆Σ(Q2). (21)

This is consistent with the fact that in all renormal-
ization schemes the combinations gnp

A ≡ ∆u − ∆d and
a8 ≡ ∆u+∆d− 2∆s are independent of Q2. Above they
appear in the combinations ±gnp

A + 1
3a8, which are likewise

independent of Q2.
Using the parameter values found in the previous anal-

yses, we can now extract the value for ∆Σ(Q2) from data
of Γ p

1 (Q2) and Γn
1 (Q2). We use the published world aver-

age values and the Spin Muon Collaboration (SMC) data
[30] for this analysis, which is performed at Q2 = 5 GeV2.
The results are found in Table 2. From this table, we can
see that the world average values do not give consistent
values for ∆Σ(Q2) from Γ p

1 (Q2) and Γn
1 (Q2), in contrast

to the SMC measurements. In what follows, we therefore
adopt the SMC measurements, that give for ∆Σ(Q2) the
values 0.292 ± 0.139 for α ≈ 0.54 and 0.287 ± 0.139 for
α = 2/3. Since these values overlap, we will use the mean
value of them, i.e.

∆Σ(Q2) = 0.29 ± 0.14 at Q2 = 5 GeV2.

The total spin of the nucleon in QCD can be decom-
posed as [31]

1
2

=
1
2
∆Σ +∆Lq +∆g +∆Lg, (22)

where ∆Σ is the spin polarization contribution of the
quarks, ∆Lq is the orbital angular momentum of the
quarks, ∆g is the gluon contribution coming from the ax-
ial anomaly, and ∆Lg is the orbital angular momentum of
the gluons.

In the χQM, the orbital angular momentum of the
quarks is compensated exactly by the spin polarization
contribution of the sea quarks. Thus, if we write ∆Σ =
∆Σvalence +∆Σsea, we have 1

2∆Σsea +∆Lq = 0 [11] and
∆Σvalence = 1. In the χQM, we can therefore interpret the
spin of the nucleon as coming from the valence quarks. The
gluonic degrees of freedom are accounted for essentially by
the GBs below ΛχSB and ∆g = ∆Lg = 0.

For higher Q values, the χQM breaks down and we
should use ordinary QCD. We will therefore assume that
the QCD calculation joins smoothly to the χQM and in-
terpret the ∆Σ ≡ ∆u +∆d +∆s calculated in the χQM
as the value of ∆Σ(Q2) for Q2 ≤ Λ2

χSB. As Q2 increases,
this value evolves according to the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) evolution equations
[32]. In the Adler–Bardeen renormalization scheme [33],
the quark spin polarizations can be written as

∆q(Q2) = ∆q − αs(Q2)
2π

∆g(Q2), (23)

for q = u, d, s. This leads to

∆Σ(Q2) = ∆Σ −Nf
αs(Q2)

2π
∆g(Q2)

=
[
1 − a

(
3 + 2α2 + 1

3ξ
′)]

−Nf
αs(Q2)

2π
∆g(Q2), (24)

where Nf is the number of flavors. Here Nf = 3. The first
term ∆Σ is interpreted here to be given by the value in
the χQM. From this it will then be possible to extract ∆g.

With our parameterization, we can calculate ∆Σ from
the χQM to be ∆Σ ≈ 0.39 as the mean value for the two
different α-values. We can then obtain an estimate of ∆g
from the value of ∆Σ(Q2) = 0.29 ± 0.14 at Q2 = 5 GeV2

obtained above. Using αs(Q2 = 5 GeV2) = 0.287 ± 0.020,
which corresponds to αs(Q2 = M2

Z) = 0.118 ± 0.003 [25],
this gives

∆g ≈ 0.7 ± 1.0 at Q2 = 5 GeV2.

This can be compared to the value found by the SMC,
which is ∆g = 1.7 ± 1.1 at Q2 = 5 GeV2 [30].
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Our analysis of∆g does not depend on any assumption
of SU(3) symmetry for the hyperon semileptonic decays.
Nevertheless, the value a8 ≈ 0.57 for α = 2/3 is in agree-
ment with the value of F/D = 0.575 ± 0.0163 used in the
analysis of [34]. When the value of a8 changes with δa8,
the change in ∆Σ(Q2) is about − 1

4δa8, which explains the
variation in Table 1.

4 Summary and conclusions

In light of the new measurements for the quark sea isospin
asymmetry by the NuSea Collaboration, the broken SU(3)
χQM gives an excellent fit to the data with the fluctuation
parameter a = 0.15 and the SU(3) breaking parameters
α ∼ 0.6 and β = 1, and the U(3) breaking parameter
ζ = 0, corresponding to no η′ GB.

With these parameter values, the χQM accounts in a
very satisfactory way for the quark sea isospin asymme-
try, the nucleon quark spin polarizations, the axial-vector
form factor of the nucleon, the magnetic moments of the
nucleons and hyperons plus many other features of low
energy hadron physics, such as the nucleon deep inelastic
scattering structure functions. In addition, the new data
are fully consistent with the matching parameter ga = 1,
as suggested by the analysis of Weinberg [21, 22]. (How-
ever, see also [35] for an extended discussion of possible
values for ga.)

The χQM also offers an independent way of analyzing
the nucleon spin problem, relying only on nucleon data.
This leads eventually to an estimate of ∆Σ(Q2) = 0.29 ±
0.14 at Q2 = 5 GeV2 and ∆g ≈ 0.7 ± 1.0 for the gluon
spin polarization in the nucleon.
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